Module 3: Evaluating the Environmental Performance of a Flowsheet

David Shonnard

Department of Chemical Engineering

Michigan Technological University

Module 3: Evaluating the Environmental Performance of a Flowsheet

- Educational goals and topics covered in the module
- Potential uses of modules in chemical engineering courses
- Student handouts
- Instructor materials
- Software
- Case study / Software Demonstrations

Module 3: Educational goals

Students will:

- become aware of potential environmental impacts for releases from chemical processes
- be able to formulate metrics of environmental impact based upon selected chemical properties
- be able to apply the environmental metrics within chemical process design activities using process simulator output
- be aware of the limitations of the environmental assessment framework

Module 3: Topics covered

- Formulating environmental metrics for chemical process designs
- Evaluating chemical process simulator output
 - » Stream and unit summaries; mass and energy
 - » Air emissions estimation
 - » Environmental fate and transport of emissions and releases
 - » Multiple environmental impact metrics

Module 3: Potential uses of the module in chemical engineering courses

Design course:

- » Comprehensive process flowsheet environmental assessment
- » Compare flowsheet technologies and configurations
- » Optimize process designs based on environmental impact

Transport Phenomena course:

» Module on interphase mass transfer in the environment

Module 3: Student handouts

- Chapter 11 from textbook: Evaluating the Environmental Performance of a Flowsheet
- Class lecture notes:
 - » edited from chapter 11
 - » instructor writes in key concepts and calculations during the lecture
- Problem 1: Evaluation of Solvent Recycle
 - » Development of environmental metrics
 - » Environmental assessment of a chemical process

Module 3: Instructor materials

- Completed class lecture notes:
 - » edited from chapter 11
 - » contains material that the instructor writes into the notes during the lecture
- Problem 1: Evaluation of Solvent Recycle
- Software for estimating metric properties

Module 3: Emissions estimation software

- Air Chief CD; EPA 1998
- Tanks4; EPA 1999

SOFTWARE DEMONSTRATION

- Emission Master; Mitchell Scientific 1994
- Environmental Fate and Risk Assessment Tool (EFRAT); MTU 1999

Module 3: Fate and transport software

- Single Compartment Models
 - » OPPT Tools (ReachScan, PDM3 Rivers)
 - » Gaussian Plume Model (Atmosphere)
- Multimedia Compartment Models
 - » Mackay Level III; 1992

SOFTWARE DEMONSTRATION

» CalTOX Level IV ; 1994

Module 3: Index generating software

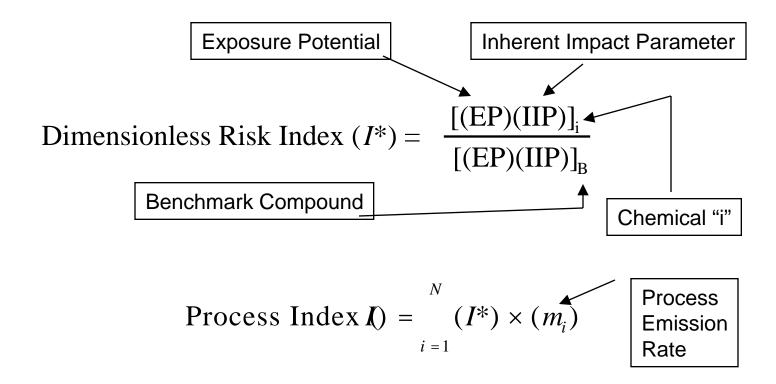
• EFRAT ; MTU 1999

SOFTWARE DEMONSTRATION

WAR, TRACI; EPA

Module 3: Environmental metrics; choices

Impacts:


- Impacts for Human and Ecosystem Health:
 - » Inhalation route non-carcinogenic toxicity
 - » Inhalation route carcinogenic toxicity
 - » Ingestion route non-carcinogenic toxicity
 - » Ingestion route carcinogenic toxicity
 - » Ecosystem toxicity
- Impacts for abiotic environmental impacts:

» global warming ozone depletion

» smog formation acidification

Module 3: Constructing metrics using environmental properties

Module 3: Constructing metrics using environmental properties (cont.)

Dimensionless	Eqn.	I* Equations	Parameter / Software		
Risk Index	#		Source(s)		
Ingestion Route Toxicity	1	$INGTP_{i} = \frac{C_{i,a}/RfD_{i}}{C_{Toluono}/RfD_{Toluono}}$	C _{i,a} & C _{Toluene,a} – Mackay Model, 1992-4;		
Potential		Toluene, a Toluene	RfD _i & RfD _{Toluene} – EPA 1994, 1997		
Inhalation Route	2	$C_{i,a}/RfC_{i}$	C _{i,a} & C _{Toluene,a} -		
Toxicity	_	$INHTP_{i} = \frac{C_{i,a}/RfC_{i}}{C_{Toluono}/RfC_{Toluono}}$	Mackay Model, 1992-4;		
Potential		C _{Toluene,a} /RIC _{Toluene}	RfC i & RfC _{Toluene} – EPA		
			1994, 1997		
Ingestion Route	3	$C_{\cdot \cdot \cdot} \times (SF_{\cdot \cdot})_{\cdot \cdot \cdot \cdot \circ}$	$C_{i,w} & C_{Benzene,w}$		
Carcinogenicity	3	$INGCP_{i} = \frac{C_{i, w} \times (SF_{i})_{ING}}{C_{Benzene, w} \times (SF_{Benzene})_{ING}}$	Mackay Model, 1992-4;		
Potential		$C_{\text{Benzene,w}} \times (SF_{\text{Benzene}})_{ING}$	SF- EPA 1994, 1997		
Inhalation Route	4	$C \sim (SE)$	$C_{i,w} & C_{Benzene,w}$		
Carcinogenicity	4	$INHCP_i = \frac{C_{i,a} \times (SF_i)_{INH}}{C_{i,a} \times (SF_i)_{INH}}$	Mackay Model, 1992-4;		
Potential		$INHCP_{i} = \frac{C_{i,a} \times (SF_{i})_{INH}}{C_{Benzene,a} \times (SF_{Benzene})_{INH}}$	SF- EPA 1994, 1997		
	~	CI.C	$C_{i,w}$ & $C_{PCP,w}$ – Mackay		
Fish Toxicity	5	$FTP_{i} = \frac{C_{i,w} \times LC_{50f,PCP}}{C_{PCP,w} \times LC_{50f,i}}$	Model, 1992-4;		
Potential		$C_{PCP,w} \times LC_{50f,i}$	LC_{50f} - Verschueren,		
		·	1996; Davis, 1994		

Module 3: Constructing metrics using environmental Properties (cont.)

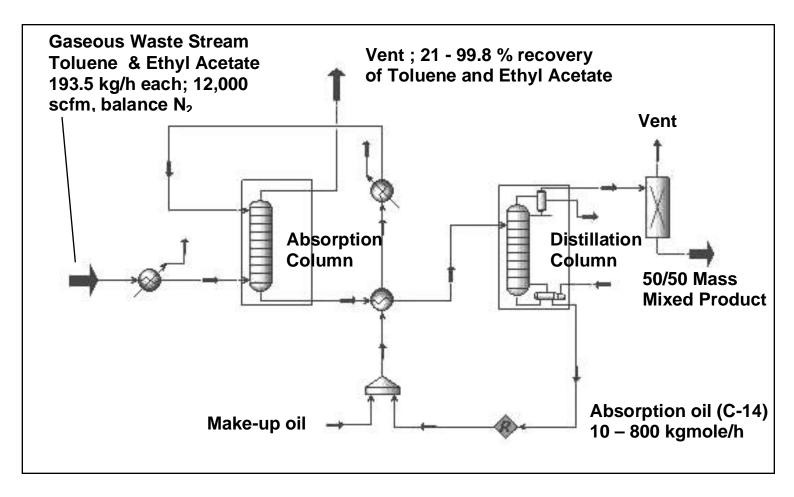
Dimensionless	Eqn.	I* Equations	Parameter / Software			
Risk Index	#		Source(s)			
Global Warming	6	$\mathrm{GWP}_{\mathrm{i}}$	GWP - Fisher, 1990a; WMO, 1992a;			
			IPCC, 1991, 1996			
	ба	$GWP_{i} = N_{C} \times \frac{MW_{CO_{2}}}{MW_{i}}$	N_C-			
Ozone Depletion	7	ODP_i	<i>ODP</i> - Fisher, 1990b; WMO, 1990a; WMO 1992b			
Smog Formation	8	$SFP_i = \frac{MIR_i}{MIR_{ROG}}$	<i>MIR</i> - Carter, 1994; Heijungs, 1992			
Acid Rain	9	ARP_{i}	ARP- Heijungs, 1992; Goedkoop, 1995			

Module 3, Problem 1: Design of a Mixed Solvent Recycle Process

Gaseous waste streams that contain volatile organic compounds (VOCs) are common in industry.

Recovering and recycle of these solvents may increase profitability and reduce environmental impacts.

Environmental impact assessment can help identify optimum VOC recovery.



Module 3, Problem 1: Overview

- Construct flowsheet: Absorption into heavy oil followed by Distillation
- Run process simulator for several heavy oil flow rates
- Estimate emissions / emissions table
- Environmental fate and transport of emissions
- Environmental metrics summary
- Compare flowsheet configurations

Module 3, Problem 1: Flowsheet

Module 3, Problem 1: Emissions Calculations ; 100 kgmole/hr

Energy Related Emissions

$$SOx (kg/hr) = \frac{(6.16x10^6 \, Btu/hr)(18kg \, SOx/1000 \, L/\% \, S)(1\% \, S)}{(0.70)(38.3x10^{-6} \, Btu/1000 \, L)}$$
Bioler Efficiency Fuel Value

Unit Operations Emissions: Distillation Column

Module 3, Problem 1: Unit Operations-Specific Emissions

UNIT OPERATION	Mass		Е	missic	on ra	te (kg	/hr)		
	Flow	Toluene	Ethyl	C-14	SOx	NOx	CO ₂	СО	TOC
"METHOD"	(kg/hr)		Acetate						
Absorption									
Column "HYSIS"	19,840	0.002	128	4.23					
Distillation "emission									
Column factor"	259.1	0.019	0.007	,					
Fugitive "emission									
Sources factor"	259.1	0.062	0.062						
Storage									
Tank "correlation"	259.1	0.0014	0.0014						
Reboiler									
Energy (10 6 Btu/hr)	6.16				3.93	0.52	499	0.129	0.007
Total Emissions (kg/hr)		0.088	128.07	4.23	3.93	0.52	499	0.129	0.007

Where are the centers for energy consumption and emissions?

100 kgmole/hr Oil Flow Rate

Module 3, Problem 1: Emissions Summary

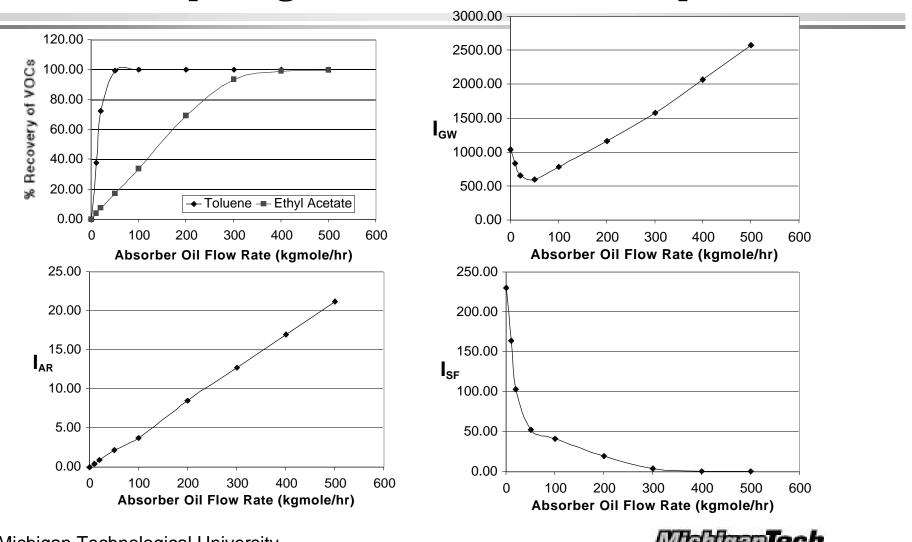
Flow rate	Emission rate (kg/hr)									
(kgmole/hr)	Toluene	E.A.	SOx	NOx	CO ₂	СО	TOC	n-C14		
0	193.55	193.55	0.00	0.00	0.00	0.00	0.00	0.00		
10	119.87	185.87	0.41	0.05	51.69	0.01	0.00	4.28		
20	53.11	178.37	0.81	0.11	103.26	0.03	0.00	4.83		
50	0.97	160.40	1.99	0.26	252.64	0.07	0.00	4.67		
100	0.09	128.07	3.93	0.52	498.80	0.13	0.01	4.23		
200	0.02	59.95	7.82	1.03	991.29	0.26	0.01	4.13		
300	0.02	12.87	11.69	1.54	1482.48	0.38	0.02	4.06		
400	0.03	1.70	15.56	2.05	1972.87	0.51	0.03	4.05		
500	0.03	0.27	19.42	2.56	2463.25	0.64	0.03	4.04		

Module 3, Problem 1: Environmental Fate Summary

Toluene Data			$C_A (g/m^3)$	C _W (g/m ³)
Molecular weight, g/mol	92.13	Emitted Chemicals		
Melting point, *C	-95	Toluene	1.26E-07	1.73E-07
Solubility in Water, g/m³	550	Ethyl Acetate	1.26E-07	1.32E-06
Vapor pressure, Pa	3800	n-Hexane	1.26E-07	5.63E-10
log Kow	2.7	Tetradecane	9.88E-08	6.82E-10
Degradation half-lives, hr			-	
- in air compartment	10	Benchmark Chemicals		
- in water compartment	200	Toluene	1.26E-07	1.73E-07
- in soil compartment	200	Pentachlorophenol	6.58E-07	1.05E-04
- in sediment compartment	2000			

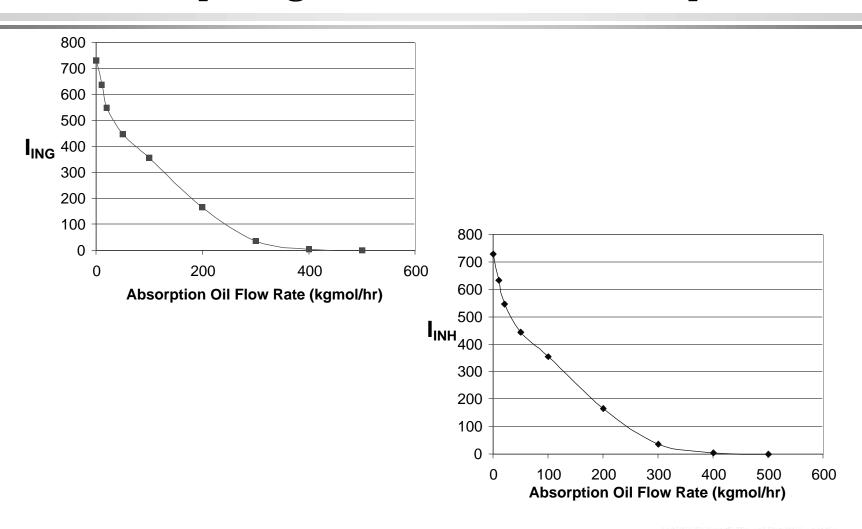
Mackay Level III Multimedia Compartment Model

Module 3, Problem 1: Risk Index Summary


Unitless	Relative Risk Index (I*)									
Compound	GWP	ODP	SFP	ARP	INGTP	INGCP	INHTP	INHCP	FTP	
Toluene	3.34	. 0	4.3	0.0	1	0	1.0	0	0.02	
Ethyl Acetate	2	0	0.9	0.0	110	0	0.3	0	0.76	
SOx	0	0	0.0	1.0	0	0	0.0	0	0.00	
NOx	40	0	0.0	0.7	0	0	0.0	0	0.00	
CO2	1	0	0.0	0.0	0	0	0.0	0	0.00	
со	2	0	0.9	0.0	0	0	50.0	0	0.00	
C-23	3.1	0	0.0	0.0	0	0	0.0	0	0.00	
C-14	3.1	0	0.0	0.0	0	0	0.0	0	0.00	
тос	3.1	0	1.6	0.0	0	0	0.0	0	0.00	

Which chemicals have the highest impact indexes?

Process Index
$$I() = \prod_{i=1}^{N} (I_i^*) \times (m_i^*)$$



Module 3, Problem 1: Comparing Processes Based on Impact

Michigan Technological University

Module 3, Problem 1: Comparing Processes Based on Impact

Module 3, Problem 1: Further Inquiry

- Can the process be improved based on environmental impact?
 - » Effects of material choices (absorber oil)
 - » Degree of heat integration in process
 - » Effects of fuel type (reduce SOx)
 - » Optimize reflux ratio on distillation column
 - » Look upstream (substitutes for toluene and ethyl acetate?)

Module 3: Summary of Software Needed

1. COMMERCIAL PROCESS SIMULATOR

» mass balances, energy balances, stream data, equipment sizes, air/water releases

2. AIR EMISSIONS ESTIMATION

3. MACKAY ENVIRONMENTAL FATE MODEL

- » concentrations of released chemicals in air, water, soil, and sediment
- » Run EPIWIN for properties

4. ENVIRONMENTAL METRICS SOFTWARE

